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The Riccati transformation has been used previously to calculate eigenvalues of systems 
of ordinary differential equations with separated boundary conditions. This note describes 
how eigenfunctions of such differential systems may also be obtained using Riccati methods. 
The techniques are illustrated by numerical examples which involve evaluation of real 
and complex eigenfunctions. 

1. INTRODUCTION 

Scott [l] introduced the Riccati transformation method for the computation of 
eigenvalues of a system of linear ordinary differential equations of the form 

du/dz = A+, u) u + B(z, cr) v 

-(dv/dz) = C(z, a) u + D(z, u) v, 
(1) 

under the linear separated boundary conditions 

u(0) = 0, u(x) = 0 or v(x) = 0. (2) 

Here u and v are in Iw” and A(z, cr), B(z, o), C(z, u), and D(z, u) are n x n real matrices 
which depend on the independent variable z and on some scalar parameter 0’. This 
work was extended by Sloan and Wilks [2] to deal with the general linear separated 
boundary conditions 

qu(O) + BlV(O) = 0 “PU(X) + PZW = 0, 

where the real matrices [+Q and [+p.J have dimensions IZ x 2n and rank n. 

(3) 

The objective of this paper is to show that the Riccati method may be used in a very 
straightforward manner to compute the eigenfunctions u and v which satisfy (I) 
and (3). Scott [3] has considered the problem of evaluating eigenfunctions of (1) 
using Riccati methods in the special case n = 1. Scott’s method involves the inte- 
gration of a scalar Riccati equation and an associated linear equation from z = 0 in 
the direction of increasing z; the approach has certain aspects in common with one 
of the methods considered here for a system with n 3 1. Section 2 of this paper dis- 
cusses the role played by the eigenfunctions in the Riccati approach and sets up 
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suitable equations for the evaluation of the eigenfunctions. Two illustrative examples 
of the theory are given in Section 3: The first is a differential system with real eigen- 
functions and the second is the Orr-Sommerfeld equation which involves complex 
coefficients and complex eigenfunctions. The final section notes some of the difficulties 
involved in the numerical solution of differential eigenproblems and indicates possible 
advantages of the Riccati approach. Further areas of research are mentioned. 

The results contained in Refs. [l, 21 are basic to subsequent discussions and it is 
convenient to have at hand a summary of relevant material from these references. 
In the accompanying paper Wilks and Bramley [4] consider the application of Riccati 
methods to an odd order system over a semi-infinite interval. The forementioned 
summary is contained in Section 2 of [4] and, to avoid unnecessary repetition, the 
summary will be regarded as part of the introduction to this paper. We need only 
repeat the key equations. Any reference to an equation in [4] will have the letters WB 
attached to the equation number; Eq. (12) for example, will be referred to as (WB12). 

The Riccati method involves a transformation to new dependent variables 
U(z) = ww + BlW and V(z) = y,u(z) + &v(z), where the 2n x 2n matrix 
M = p1 $1 is nonsingular [4]. The transformed boundary conditions are (WBlO) 
at z = 0 and 

d(x) + /m(x) = 0 (4) 

at z = x, where [CL /I] is an n x 2n matrix of rank n. If U(z) and V(z) are related by 

U(z) = E(z) V(z) (5) 

then E(z) will satisfy the matrix Riccati equation (WB12) and the condition at z = 0 
indicates that this equation may be integrated from E(0) = 0. The approach adopted 
in [4] is to transform from E(z) to a new matrix R(z) after the integration has com- 
menced, with R(z) chosen to have zero determinant at characteristic lengths. However, 
Eqs (4) and (5) show that characteristic lengths may be located using the equation 

det[orE(x) + /3] = 0 (6) 

provided 01 # 0, which is the case if y1 and 6, are chosen suitably. In the course 
of the integration from z = 0 to z = x, any singularities of det E(z) may be traversed 
by transforming to a Riccati system in the matrix ,??(z) 

2. COMPUTATION OF EIGENFUNCTION 

2.1. Solution Vectors and Riccati Matrices 

Prior to proposing methods for evaluating eigenfunctions it is of some importance 
to consider how the existence of eigenfunctions is related to the behavior of the Riccati 
matrices. Suppose the problem defined by (1) and (3) is written as 

dyjdz = Ly, 
By(O) = 0, 
Cy(x) = 0, 

(7) 
@a) 
(W 
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where Y = K3, B = [aI Al, ~2 = [a2 PA and L is the obvious 2n x 2n coefficient 
matrix. If 2(z) denotes the space of solutions of (7) which satisfy the initial condition 
(Sa) then at any station z this space will be a vector space of dimension n. Under the 
transformation (WB9) any element y(z) maps onto Y(z) = [$‘I and the transformed 
boundary conditions are 

[I O] Y(0) = 0, @a> 

[a p] Y(x) = 0. (9b) 

The use of transformation (5) effectively assumes that any element Y(z) of 2(z) may be 
represented as a linear combination of the columns of a matrix 

where the columns of the n x n matrix V(z) are linearly independent and they may be 
regarded as a basis for the solutions V(z). With Y(z) represented in terms of the basis 
(10) we see that if in the course of the integration a point z is reached at which there 
is a Y(z) in z(z) and in the null space of [Z 01, denoted by N([Z 0]), then det[E(z)] is 
necessarily zero. The terminating condition (9b) will be satisfied at any point z = x 
where there is a vector Y(z) in z(z) and in iV([ol 81). With Y(z) represented by the 
basis (10) a necessary and sufficient condition for the existence of such a common 
vector is that det[cLE(z) + /3] = 0 at z = x. The vector Y(x) which is in E(X) and 
N([cr /3]) is an eigenfunction of the given differential system evaluated at z = X. The 
problem of finding an eigenfunction for all z in 0 < z < x is that of finding the 
element of z(z) which matches Y(x) at z = x. The vector Y(x) is given by [$,“,‘I, 
where V(x) is a suitably normalized solution of [a E(x) + fl] V(x) = 0, and U(x) = 
E(x) V(x). If the eigenfunction Y(z) has been obtained we may obtain the solution 
y(z) of Eqs. (7) and (8) by means of the transformation y(z) = M-l Y(z). 

Note that less general boundary conditions are dealt with in the obvious manner. 
For example, to solve Eq. (1) with boundary conditions n(O) = 0, U(X) = 0 we use 
the matrix R defined by (WB3). At z = x an eigenfunction is a vector y(x) which is 
in z(x) and N([Z 01) so that y(x) is given by [t,,,], where v(x) is a suitable solution 
of R(x) V(X) = 0. If the terminating condition is v(x) = 0 then y(x) = [“o’“‘], where 
S(x) u(x) = 0. Note also that if a problem is being solved for a specified value of x 
we assume that the parameter D in (1) has been adjusted until there is a vector common 
to 22(x) and the appropriate null space. 

To complete this discussion we consider singularities of the Riccati matrices in 
terms of the structure of the solution space z(z). We noted that the formation of E(z) 
assumes a basis of type (10) for 2(z). If, however, there is a point z, at which z(z) 
contains a vector with zeros in positions n + 1 to 2n then the matrix V(z) in (10) 
cannot have n linearly independent columns. We might say that the V solution 
space has lost rank. In practice a switch is made to the matrix G(z) = Z?(z) 
before z,, is reached and the elements of Z?(z) are formed by integrating the 
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appropriate Riccati equation. The use of E-l(z) assumes a basis for Z(z) of the 
form 

[ I GFz) U(z), (11) 

where the columns of U form a basis for the U solution. The structure of Y(z,,) shows 
that det[G(z,) V(z,)] = 0, f rom which it follows that det[G(z,)] = 0. In short, 
det[E(z)] will be singular at any point z where Z(z) and N([O I]) have a vector Y(z) in 
common. In terms of the dependent variable y(z) in (7) and (8), det[E(z)] will be 
singular at any point z where Z(z) and A& S,]) have a vector y(z) in common. 
If det[E(z)] remains finite throughout some region 9 in R then N([yr S,]) does not 
intersect 21(z) for z ~9. The choice of y1 and 6, will obviously affect the positions of 
singularities and the behavior of the Riccati matrix near the singularities. 

2.2. Equations for the Eigenfunction 

The obvious approach to the evaluation of the eigenfunction Y(z) is to integrate 
the governing equations backwards from z = x to z = 0 using Y(X) and E(x) as 
initial conditions. If, in the format of (I), the linear system in U and V has coefficient 
matrices LZZ’, 9, g, and 3, then the Riccati equation in E is (see (WB12)) 

E’=~‘+E+ELBfE~E. (12) 

If we eliminate U from the equation -V’ = %XJ + 9V by means of Eq. (5) we obtain 

V’ = -(%‘E + 9)V (13) 

in the vector V. Equations (12) and (13) may be integrated backward from z = x 
and the upper half of Y(z) is then obtained by means of Eq. (5). If a singularity is 
approached in the course of the integration then a switch may be made to G(z) and 
the singularity traversed using the equations 

--G’=SC+Gsd+BG+Gc@G (14) 
and 

U’ = (58 + c@G)U, (15) 

where (14) is the analog of (WB6) and (15) is obtained by eliminating V from U’ = 
&U + 9V by means of 

v=Gu. (16) 

Computations performed on the Orr-Sommerfeld equation indicated that the 
differential equations are inherently unstable for backward solution. This difficulty 
may be readily overcome as shown in Section 3. The reverse integration of an awkward 
Riccati system may be avoided and the eigenfunction obtained by generating E(z) 
and V(z) which form the basis (10). The appropriate equations are (12) and (13) 
with V(z) replaced by V(z) in the latter and with an appropriate set of orthonormal 
vectors serving as boundary conditions on the columns of V(z) at z = 0. The solution 
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for Y(z) at any station z is given by [“:“‘I V(z)c, where c is a suitably normalized 
solution of 

[a E(x) + p] V(x)c = 0. 07) 
Care must be taken to avoid extreme growth in the elements of the matrix V(z), 
otherwise c will not be obtained accurately. At any point where growth has commenced 
the columns of V(z) may be replaced by an orthonormal set. Continuity of Y(z) at this 
point will give a relationship between the coefficient vectors c on either side. If a 
switch has to be made from E(z) to G(z) at some point z1 , a basis like (11) is initiated 
at z1 with U(zJ suitably chosen. Finally note that the evaluation of Y(z) by forward 
integration involves the solution of 2n2 equations, similar to classical shooting 
methods, while backward integration involves only n(n + 1) equations. 

3. NUMERICAL EXAMPLES 

Problem 1. Consider the problem of computing nontrivial solutions of 

(d4y/dz4) - kqv = 0 (18) 

under the boundary conditions 

Y(O) = Y’(O) = 0, y(l) = y’(1) = 0. (19) 

The eigenvalues are readily given as the positive roots of the transcendental equation 
cos k cash k = 1 and the first of these, which we use in the computation, is 
k, = 4.7300407. The eigenfunction yj(z) associated with the jth eigenvalue kj and 
satisfying the normalizing condition y”(l) = 1 is 

YjCz> 

(sin ki - sinh kj)(cos kjz - cash kjz) - (COS kj - cash kj)(sin kjz - sinh k,z) 
2kj2 (COS kj sinh kj - sin kj cash kj) (20) 

This problem with known solution was chosen as a reliable test problem. 
The obvious choice of dependent variables for the Riccati approach is u = [ES], 

v = [$I and with this choice the problem lies in the class of problems described by 
Eqs. (1) and (2). The Riccati elements arising from this choice have extremely steep 
gradients near singularities and it is convenient to use variables U and V defined by 
U = II + M,v, V = v, where X is a free scalar parameter and I1 = [: 111. If Eq. (18) 
is written in the format of (1) with dependent variables U and V, the coefficient 
matrices are 

a?‘= 8 :, =&,B= [; ;],V=-k4[O o]=-k41,,& [z4 -‘] [ 1 1 0 0 * 
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In the computations k is set equal to kl so that z = x = 1 is the first characteristic 
length. If E(z) is introduced through (5), the Riccati equation for E(z) and for its 
inverse G(z) are given by (12) and (14), respectively. The condition U(0) - ;V,V(O) = 0 
yields [E(O) - AZ,] V(0) = 0 and this provides the initial condition E(0) = ATI 
which permits the initiation of the solution of (12). 

System (12) was integrated from z = 0 and switches were made between E(z) and 
G(z) when the respective determinants exceeded unity in modulus. h was adjusted to 
reduce slopes at singularities and eventually integrations were performed with 
h = -10. For this value of h the determinant of G(1) is -0.0790061 so that the 
final stage of the integration is carried out using Eq. (14). The reverse integration 
commences at z = 1 with Eqs. (14) and (15), so a value of U(1) is required for 
initiation. The end condition [I - X1, G(l)] U(1) = 0 is satisfied by any U(1) of the 
form [“$“I. W e normalized the first component, U,(l), to obtain an eigenfunction 
to match (20) at z = 1. The appropriate U(1) is readily shown to be U(1) = [t]. 
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FIG. 1. Dekrminants of E(z) and G(z). 
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Equations (14) and (15), with switches to (12) and (13), were integrated from z = 1 
to z = 0 using a standard fourth-order variable step Runge-Kutta procedure with 
stepsize control based on local error. Computations were performed on an ICL 1904s 
computer using single-length arithmetic. The integration passed through three 
switching points and the first component of U(z) - AV(z) gave a highly accurate 
approximation to yl(z) throughout the region 0 < z < 1. Figure 1 shows the profiles 
of det[E(z)] and det[G(z)] and Table I gives computer values of U,(z) - hV,(z) at 
z = 0.5 (0.1) 0.9 which are correct to the number of digits shown. 

TABLE I 

Eigenfunction &(z) - hV,(z) for Problem 1. There is symmetry about z = 0.5 

Z 0.5 0.6 0.7 0.8 0.9 
10’ x (U,(z) - x VI(Z)) 354920 325265 244935 138422 42261 

Problem 2. Here we consider the computation of the complex solution $(z) of 
the Orr-Sommerfeld equation 

[(D2 - K’)’ - itc Re{(ti - c)(D2 - K”) - D2ti}] #J(Z) = 0, 

under the homogeneous boundary conditions 

(21) 

d(O) = b”(0) = 0, r+(l) = $‘(I) = 0. (22) 

Here D FE d/dz, U = 1 - z2, i2 = - 1, K and Re are real parameters, and c is a 
complex parameter. The problem arises in the study of linear instabilities in plane 
Poiseuille flow. If the Reynolds number, Re, the wave speed, c, and the wave number, 
K, have the values 5772.222, 0.264000, 1.020545, respectively, then the system has a 
nontrivial solution. This is the set of parameter values corresponding to the critical 
point on the neutral stability curve and the problem of computing accurate values 
for these parameters has attracted a great deal of attention. The quoted values were 
obtained by improving results given in a paper by Chock and Schechter [5]. The 
improvement was achieved by an iterative technique using a Riccati system; the 
parameter K was fixed during the iteration and the other parameters were adjusted 
until the terminating condition (6) was satisfied to the required accuracy. 

Introduce the vectors 

where y and 6 are nonzero parameters, and introduce E(z) using Eq. (5). If required, 
y and 6 permit scaling of the E(z) elements. When Eq. (21) is written in the form of (1) 
with dependent variables U and V, the coefficient matrices become 

sd=~=O, 1/a 

w = [-“,,y (K” + @)/a 1 ’ 

where @ = K2 + iK Re(u - c) and # = K~@ - %c Re. 
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System (11) may now be constructed and this is integrated from z = 0 using the 
initial condition E(0) = 0. The boundary condition at z = 1 may be written as 

au(l) + pV(l) = 0 (see Eq. (4)), with CL = I1 and /3 = (l/y) & , 

and the resulting terminating condition reduces to E,(l) = 0, where &(z) is the 
component of E(z) in the first row and second column. With the parameters Re, K, 

and c as given above the eight scalar equations arising from (12) may be integrated 
without switching from z = 0 to z = 1 and the condition E,(l) = 0 is satisfied. 
To initiate the reverse integration for the eigenfunction we chose V(1) = G] as a 
suitably normalized vector which satisfies [a E(1) + fi] V(1) = 0. 

In Section 2.2 we stated that the backward integration of (12) suffered from an 
inherent instability problem. This was overcome by storing E(z) at a set of points 
0 < z1 < z2 < *.* < z, < 1 during the forward integration. On the reverse sweep 
the computed value of E(zj) was replaced by a stored value at zj when the integration 
reached this point. This method of successive initiation permitted a straightforward 
evaluation of the eigenfunction. Computed values of 4(z) = I/,(z)/y are given in 
Table II. The results in Table II were obtained using a standard fourth-order Runge- 
Kutta procedure. The scaling parameters y and 6 were both set equal to 10 and E(z) 
was stored at z = 0.1(0.1)0.9 on the forward sweep. With such a small matrix E(z) 
no storage problems are encountered in storing at intervals of 0.1; the accuracy given 
in Table I was also achieved with fewer intermediate storage points. 

TABLE II 

Real and imaginary parts of Orr-Sommerfeld eigenfunction, 4(z). Critical point on neutral stability 
curve with Re = 5772.222, K = 1.020545, c = 0.264000, q(l) = 1 

Z 0 0.1 0.2 0.3 0.4 
lob x Re(&z)) 1287 1276 1243 1188 1108 
lo6 x Im(&z)) 1148 1138 1109 1060 988 

Z 0.5 0.6 0.7 0.8 0.9 
lw x WW) 1001 863 687 459 204 
106 x W+(z)) 893 770 614 408 137 

Problem 3. The second problem was repeated using the forward integration 
method which generates a basis of the form (10). Equations (12) and (13) were 
integrated from z = 0 to z = 1, with V(z) replacing V(z) in Eq. (13). To initiate 
the integration we have E(0) = 0, and V(0) was set equal to the unit 2 x 2 matrix. 
Growth in components of V(z) prevents a complete integration from z = 0 to z = 1 
and accordingly a set of points 0 = z,, < z1 < z2 < ... < z, < z,,,,, = 1 was 
selected and at each of these E(z) and V(z) were stored. When V(z,), j = 1,2,..., m 
had been stored V(z) was set equal to the unit 2 x 2 matrix and the integration from z, 
to z~+~ was then performed. If cj , 0 < j < m, is the coefficient vector which applies 

581/24/3-S 
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in the interval zj < z < z~+~ , then the eigenfunction in the final interval is obtained 
by finding a nontrivial solution of 

[a E(1) + p] V( 1) c, = 0. (23) 

As in Problem 2 we used the normalizing condition V,( 1) = 1. These conditions are 
sufficient for the evaluation of c, . For 1 < j < m, cj-i is obtained from cj using the 
recurrence relation 

V(z,) cj-1 = Cf ) (24) 

which ensures continuity of Y(z) at z = zj . The solution Y(z) at z = z, is given 
simply as 

Y(Zj) = [y] V(Zj) q-1 

where E(zi) and V(zJ are the stored values for z = zj . 
The eigenfunction was obtained by the method described with successive initiations 

at intervals of 0.1 and with y and 6 each set equal to 1. The computed values of V,(z) 
agreed exactly with the values given in Table II. As in Problem 2 the accuracy given 
in Table II could be achieved with fewer intermediate starting points. 

Considering the abundance of published material on the Orr-Sommerfeld equation 
there is a surprising paucity of numerical results on eigenfunction evaluation which 
are suitable for comparison purposes. The first accurate numerical solution was 
achieved by Thomas [6] using a finite difference method with local truncation error 
of fourth order in the step length. He employed up to 100 nodes in the interval 
0 < z ,( 1. Thomas considered the unstable mode corresponding to K = 1, 
Re = 10,000 and, by extrapolating to zero step length, he obtained the value 
0.2375259 + 0.00374041’ for c. The solution of Eq. (21) is tabulated in [6] for these 
parametric values and with 4(z) satisfying the normalizing condition $(O) = 1. 
Thomas’ parametric values were used here and a numerical approximation to d(z) 
was obtained using the backward and forward integration methods described above 

TABLE III 

Real and imaginary parts of Orr-Sommerfeld eigenfunction, +(z). Unstable mode with Re = 10,000, 
K = 1, c = 0.2375259 + O.O037404i, 4(O) = 1 

.!? 0 0.1 0.2 0.3 0.4 
lo5 x Re($(z)) 106 99187 96725 92550 86542 
IO5 x Im(+(z)) 0 -6 -26 -59 (1) -105 

Z 0.5 0.6 0.7 0.8 0.9 
lo5 x Re(&z)) 78519 68204 (1) 55158 38410 16656 (1) 
lo6 x Im(+(z)) -167 (1) -244 (1) -336 (1) -403 (1) -1900 



RICCATI TRANSFORMATIONS 329 

for Problems 2 and 3. The points z = O.l(O. 1)O.g were chosen as intermediate storage 
points for the backward integration and as initiation points for the forward integration. 
The computed results, normalized as in [6] are reproduced in Table III. A bracketed 1 
following a few entries in Table III indicates that these results differ from Thomas’ 
corresponding results by one unit in the least significant digit. 

4. COMMENTS 

The Riccati method has certain favorable points relative to traditional shooting 
methods for the evaluation of eigenvalues of linear differential systems. Tn the iterative 
process, for example, each integration sweep involves half the number of equations 
which are solved using traditional methods. If a shooting method operates by 
generating a basis of the solution space then steps have to be taken to overcome the 
effects of growth in the basis components. Keller’s [7] method of parallel shooting 
and the method of orthonormalization described by Conte [8] are both aimed at 
overcoming the numerical difficulties associated with such problems. An efficient 
implementation of the orthonormalization procedure has been described in a detailed 
report by Scott and Watts [9]. In the description of the Orr-Sommerfeld calculations 
given in the preceding section we noted that the elements of E(z) were well behaved 
in the forward integration while those of V(z) suffered from a growth problem. 
The good behavior of the E elements illustrates the point that the Riccati method 
will overcome some of the numerical difficulties which require special attention when 
a classical approach is being used. A recent review by Guderley [IO] on methods for 
stiff inhomogeneous two-point boundary value problems describes a projection 
method for use with this type of problem; the method is closely related to the Riccati 
approach. This note has shown that if the eigenvalue has been obtained by a Riccati 
method then an associated eigenfunction may be evaluated with little additional effort. 

The use of Riccati transformations for eigenvalues and eigenfunctions of (1) 
and (3) is readily extended to the case where the system (1) is of order n with p 
boundary conditions at z = 0 and s boundary conditions at z = x, where p + s = n 
and p > s [I 11. In this case the matrix R in Eq. (WB3) is of type p x s and the 
elements of R become infinite if there is a vector common to the solution space and 
to the null space of a certain s x IZ matrix. The singularities may be traversed by 
switching to a new matrix which also satisfies a p x s matrix Riccati equation. 
There is a degree of flexibility in the choice of switching points and in the method of 
implementing the switch. The problem of optimizing the switching process is being 
investigated. Finally we note that even when R is a square matrix, experience has 
shown that accuracy may be lost at switching points. The parameter h was introduced 
in Problem 1, for example, to ease switching problems. 
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